\qquad Date \qquad Hr \qquad

Lesson 1.1: Real Numbers and Number Operations

The Real Number System

Rational Numbers:	Irrational Numbers:	
Integers:		
Whole Numbers:		

Rational: number that can be written as a fraction or decimal that ruminates or repeats
Integer. positive and negative whole numbers including 0
Whole Number:

Natural Number:

Irrational: real numbers that are not rational; decimal does not repeat or terminate

Example 1: Place each number in the correct region of the diagram:
293
-47
$\frac{5}{9}$
0.184
$\frac{6}{3}$
$\sqrt{7} \quad-0.42$
$\pi \quad-\frac{7}{1}$
$-\sqrt{9}$
$4 \frac{2}{3}$

In between any two real numbers there are an infinite number of numbers.
Is zero +/-/neither?
Is zero odd or even?

Origin: center, starting point labeled 0 on a number line
Graph: the point on a number line that corresponds to a real number
Coordinate: the number that corresponds to a point on the number line

Example 2: Graph the following numbers on the number line: $\quad-\frac{4}{3}, \quad \sqrt{2}, 2.7$

What statements can you create using < and > signs?

Properties of Addition \& Multiplication

Given a, b, and c are real numbers

Property	Addition	Multiplication
Commutative		
Associative		
Identity		
Inverse		
Distributive		

Opposite: additive inverse (3 and -3)
Reciprocal: Multiplicative inverse ($\frac{2}{3}$ and $\frac{3}{2}$)

* Subtraction is adding the opposite
*Dividing fractions is multiplying by reciprocal

Example 3: Identify the property shown.
a. $(3+9)+8=3+(9+8)$
b. $14^{*} 1=14$

Example 4: Give an example of the commutative property.

