lame	Date	Hr
------	------	----

Lesson 1.1: Real Numbers and Number Operations

The Real Number System

Rational Numbers:	Irrational Numbers:
Integers:	
Whole Numbers:	

Rational: number that can be written as a fraction or decimal that ruminates or repeats

Integer: positive and negative whole numbers including 0

Whole Number:

Natural Number.

Irrational: real numbers that are not rational; decimal does not repeat or terminate

Example 1: Place each number in the correct region of the diagram:

293	-47	<u>5</u> 9	0.184	$\frac{6}{3}$	
$\sqrt{7}$	-0.42	π	$-\frac{7}{1}$	$-\sqrt{9}$	$4\frac{2}{3}$

In between any two real numbers there are an infinite number of numbers.

Is zero +/-/neither?

Is zero odd or even?

Origin: center, starting point labeled 0 on a number line

Graph: the point on a number line that corresponds to a real number

Coordinate: the number that corresponds to a point on the number line

Example 2: Graph the following numbers on the number line: $-\frac{4}{3}$, $\sqrt{2}$, 2.7

What statements can you create using < and > signs?

Properties of Addition & Multiplication

Given a, b, and c are real numbers

Property	Addition	Multiplication
Commutative		
Associative		
Identity		
Inverse		
Distributive		

Opposite: additive inverse (3 and -3)

* Subtraction is adding the opposite

Reciprocal: Multiplicative inverse $\left(\frac{2}{3} \text{ and } \frac{3}{2}\right)$

*Dividing fractions is multiplying by reciprocal

Example 3: Identify the property shown.

a. (3 + 9) + 8 = 3 + (9 + 8) **b.** 14 [•] 1 = 14

Example 4: Give an example of the commutative property.