Lesson 1.6: Solving Linear Inequalities

Symbols Review:

> < ≥ ≤ ≠

0

Examples:

1.

a. x > 3

VS.

3 < x

b. x ≤ -2

c. 2x < 8

VS.

-2x < 8

^{***} When multiplying/dividing by ______, switch the sign!

2. Solve and graph the inequality

 $7x + 9 \ge 10x - 12$

3. Solve and graph the inequality

 $2(n-4) \le 6$

4. The percent of households (h) with cable TV is modeled by h = 2.3y + 44, where y is the number of years since 1998. Describe the years when the % of household with cable is less than 53.2%.

Compound Inequalities: two simple inequalities joined by "and" or "or"

"and" inequalities can be written as one

$$x > 5$$
 and $x < 8$

$$8 > x > 5$$
 or $5 < x < 8$

"or" inequalities are two independent solutions

$$x < 5 \text{ or } x > 8$$

** x _____ satisfy both conditions.

Examples

1. Solve and graph the inequality.

$$-8 < 2x + 4 \le 10$$

2. Solve and graph the inequality.

$$6x + 9 < 3$$
 or $3x - 8 > 13$

3. Solve and graph the inequality.

$$-2 \le x - 7$$
 or $11 \ge x - 7$

4. Solve and graph the inequality.

$$x - 1 \le 5$$
 and $x + 3 \ge 10$

