ALGEBRA 2H

Section 13.3: Trigonometric Functions of Any Angle **NOTES**

I. **Special Triangles in all 4 Quadrants:**

(b)

- (a) ____
- (b) _____(c) ____

(d) sin 690°

45° - 45° - 90°: Find the exact value of each trig function using special triangles. 2.

(b)

cos 225°

(c)

- (c) _____

tan 315°

II. Coordinates of a Point on a Circle:

$$\sin\theta =$$

solve for y: ____

$$\cos \theta =$$

solve for x:

$$\tan \theta =$$

Therefore the coordinates of point P are ______.

Example:

Find the point P where a circle of radius 5 intersects the terminal ray of a 150° angle. Give exact values for the coordinates.

Draw a picture!

Point P = _____

III. The Unit Circle:

1. **Definition:** The unit circle is the circle centered at the origin with a radius of .

$$\sin\theta =$$

solve for y:

$$\cos\theta =$$

solve for x:

$$\tan \theta =$$

Therefore the coordinates of point P are ______.

- 2. The unit circle can be used to find the trig value at any angle, even 0°, 90°, 180°, and 270°.
 - (a) Fill in the coordinates of each point on the circle that is on the x or y axis.

Note:
$$\sin \theta = \mathbf{y}$$

 $\cos \theta = \mathbf{x}$

(b) Now use the unit circle to evaluate each of the following trig functions.

$$\sin 0^{\circ} =$$

$$\sin 90^{\circ} =$$

$$\sin 180^{\circ} =$$

$$\sin 270^\circ =$$

$$\cos 270^{\circ} =$$

The coordinates of all the points on the unit circle that line up with any angle that is a multiple of 30 or 45 can be calculated and used to evaluate trig functions. The unit circle on the next page has all this information on it.

IV. The Unit Circle:

Notes: The coordinates at any point on the unit circle are $(\cos \theta, \sin \theta)$.

 $x = \cos \theta$

$$y = \sin \theta$$

$$\tan \theta = \frac{y}{x}$$

Examples: Use the unit circle to find the exact values of each trig function.

(a)
$$\sin 60^{\circ} =$$

(b)
$$\cos 150^{\circ} =$$

(c)
$$\tan 30^{\circ} =$$

(d)
$$\sin 210^{\circ} =$$

(e)
$$\cos 405^{\circ} =$$

(f)
$$\tan 180^{\circ} =$$

(g)
$$\sin 315^{\circ} =$$

(h)
$$\cos 300^{\circ} =$$

(i)
$$\tan 90^\circ =$$

(j)
$$\tan 225^{\circ} =$$