ALGEBRA 2H

Section 13.4: Solving Trigonometric Equations

NOTES - Part 2

I.	Solving Trigonometr	ia Fanations
II.	Solving Higonomen	ic Equations

1.	Most trigonometric equations have unique solutions, but an infinite number of actual solutions since angles can be named many ways.		
	Examples: Use a calculator and/or the unit circle to solve the equations. Find all solutions $0^{\circ} \le \theta < 360^{\circ}$.		
	(a) $\sin \theta = \frac{1}{2}$ (b) $\cos \theta = -\frac{1}{2}$		
2.	2. It is possible for a trigonometric equation to only have unique solution if the solutions are 0°, 90°, 180°, or 270°.		
	Examples: Use a calculator and/or the unit circle to solve the equations. Find all solutions $0^{\circ} \le \theta < 360^{\circ}$.		
	(a) $\sin \theta = 1$ (b) $\cos \theta = -1$		
3.	It is also possible for a trigonometric equation to have 2 unique solution when using 0°, 90°, 180°, or 270°, so you always have to check for a second solution.		
	Examples: Use a calculator and/or the unit circle to solve the equations. Find all solutions $0^{\circ} \le \theta < 360^{\circ}$.		
	(a) $\sin \theta = 0$ (b) $\cos \theta = 0$		

4. You will need to solve trigonometric equations with all 6 trig functions. Also, some equations will require other algebraic solving steps before you find the angles.

Examples: Use a calculator and/or the unit circle to solve the equations. Find all solutions $0^{\circ} \le \theta < 360^{\circ}$.

(a) $\tan \theta = 1$

(b) $\tan \theta = -\sqrt{3}$

(c)
$$\csc \theta = -2$$

(d) $\sec \theta = \sqrt{2}$

(e)
$$\cot \theta + 2 = 1$$

(f)
$$2\cos\theta = -\sqrt{3}$$

5. You will also be expected to give your answers in radians. Watch the directions.

Examples: Use a calculator and/or the unit circle to solve the equations. Find all solutions $0 \le \theta < 2\pi$.

(a) $\sin \theta = -1$

(b) $\cos \theta = \frac{\sqrt{3}}{2}$

The Unit Circle:

Notes: The following unit circle has all the degree and radian measures for each angle and shows the coordinates of each point.

$$x = \cos \theta$$
, $y = \sin \theta$, and $\tan \theta = \frac{y}{x}$

