Lesson 8.1: Exponential Growth

Exponential function:

Example 1: Graph $y=3^{x}$

Notice the \qquad is an asymptote: a line the graph approaches but does not cross.

Example 2: Graph $y=-3^{x}$

\mathbf{x}	\mathbf{y}

Domain: \qquad
Range: \qquad because__

Example 3: Graph $y=2 \cdot 3^{x}$

\mathbf{x}	\mathbf{y}

Domain: \qquad
Range: \qquad

Example 4: Graph $y=2 \cdot 3^{x-2}+1$

\mathbf{x}	\mathbf{y}

Domain: \qquad
Range: \qquad

Example 5: In 1980 about 2,180,000 people worked from home. Over the next 10 years the number of people working from home increase 5% per year.
a) Write a model giving the number of workers (w) working at home t years after 1980 .
b) Using your model estimate the number of people working from home in 2010.

Compound Interest: Interest paid on the original investment (principal) and on the previously earned interest.

Example 6: You deposit $\$ 1500$ in an account that pays 6% annual interest. Find the balance after 1 year if the interest is compounded...
a. annually
b. semi-annually
c. quarterly

Lesson 8.2: Exponential Decay

Recall:

Exponential growth: $\quad y=a(1+r)^{t}$
${ }^{* *}$ where $a>0$ and $b>1$

Exponential decay: $\quad y=a(1-r)^{t}$
** where $a>0$ and $0<b<1$

=			

Example 1: State whether $f(x)$ is exponential growth or decay
a. $f(x)=\frac{1}{3}(2)^{-x}$
b. $f(x)=4\left(\frac{5}{8}\right)^{x}$
c. $f(x)=8\left(\frac{5}{2}\right)^{x}$

Example 2: Graph $f(x)=2\left(\frac{1}{2}\right)^{x}$

\mathbf{x}	\mathbf{y}

Domain: \qquad
Range: \qquad

Example 3: Graph $f(x)=2\left(\frac{1}{2}\right)^{x-1}-3$

\mathbf{x}	\mathbf{y}

Domain: \qquad
Range: \qquad

Example 4: You buy a new car for $\$ 28,000$. The value y of the car decreases by 16% each year.
a. Write an exponential decay model for the value of the car.
b. Estimate the value after 2 years.
c. After 10 years?

Lesson 8.3: The Number "e"

The Number "e": is called the natural base or the Euler number after its discoverer Leonhard Euler.

Notice: given $x=\left(1+\frac{1}{n}\right)^{n}$
a. Let $n=10$
$x=2.594$
b. Let $n=100$
$x=2.705$
c. Let $n=1000$
$x=2.717$
d. Let $n=10,000$
$x=2.718$
e. Let $n=100,000$
$x=2.718$
f. Let $n=1,000,000$
$x=2.718$

The values are approaching a fixed decimal number $2.718 \ldots$

The Natural Base e: The natural base e is irrational and defined as follows:

$$
e \approx 2.718281828459
$$

Example 1: Use a calculator to evaluate the expression. Round to three decimal places.

$$
e^{1}=
$$

$e^{2}=$

Example 2: Simplify

a. $e^{3} \cdot e^{4}$
b. $\frac{10 e^{3}}{5 e^{2}}$
c. $\left(3 e^{-4 x}\right)^{2}$

Natural Base Functions: exponential functions of the form $f(x)=a e^{r x}$.
If $a>0$ and $r>0$ then it represents exponential growth. If $a>0$ and $r<0$ it represents exponential decay.

Example 3: Tell whether each is example of exponential growth or decay.
a. $f(x)=\frac{1}{8} e^{5 x}$
b. $f(x)=e^{-8 x}$

Continuously Compounded Interest: If interest is compounded continuously we use the formula...

$$
A=P e^{r t}
$$

Example 4: You deposit $\$ 1500$ in an account that pays 7.5% annual interest confounded continuously. What is the balance after 1 year?

