Lesson 8.1: Exponential Growth

Exponential function:

 $y = ab^{x}$ OR $y = a(1+r)^{t}$ a = b or (1+r) = x or t =

Example 1: Graph $y = 3^x$

Notice the ______ is an **asymptote**: a line the graph approaches but does not cross.

Example 2: Graph $y = -3^x$

Example 3: Graph $y = 2 \cdot 3^x$

Example 4: Graph $y = 2 \cdot 3^{x-2} + 1$

Example 5: In 1980 about 2,180,000 people worked from home. Over the next 10 years the number of people working from home increase 5% per year.

- a) Write a model giving the number of workers (w) working at home t years after 1980.
- b) Using your model estimate the number of people working from home in 2010.

Compound Interest: Interest paid on the original investment (principal) and on the previously earned interest.

Example 6: You deposit \$1500 in an account that pays 6% annual interest. Find the balance after 1 year if the interest is compounded...

a. annually

- b. semi-annually
- c. quarterly

Lesson 8.2: Exponential Decay

Example 1: State whether f(x) is exponential growth or decay a. $f(x) = \frac{1}{3}(2)^{-x}$ b. $f(x) = 4\left(\frac{5}{8}\right)^{x}$

Example 2: Graph $f(x) = 2\left(\frac{1}{2}\right)^x$

C. $f(x) = 8\left(\frac{5}{2}\right)^x$

Domain: _____

Range: _____

Example 3: Graph $f(x) = 2\left(\frac{1}{2}\right)^{x-1} - 3$

Example 4: You buy a new car for \$28,000. The value y of the car decreases by 16% each year.

a. Write an exponential decay model for the value of the car.

b. Estimate the value after 2 years.

c. After 10 years?

Lesson 8.3: The Number "e"

The Number "e": is called the natural base or the Euler number after its discoverer Leonhard Euler.

Notice: given $x = \left(1 + \frac{1}{n}\right)^n$	
a. Let $n = 10$	x = 2.594
b. Let $n = 100$	x = 2.705
c. Let $n = 1000$	x = 2.717
d. Let $n = 10,000$	x = 2.718
e. Let $n = 100,000$	x = 2.718
f. Let $n = 1,000,000$	x = 2.718

The values are approaching a fixed decimal number 2.718...

The Natural Base e: The natural base e is irrational and defined as follows:

 $e \approx 2.718281828459$

Example 1: Use a calculator to evaluate the expression. Round to three decimal places.

 $e^1 = e^2 =$

Example 2: Simplify a. $e^3 \cdot e^4$

b. $\frac{10e^3}{5e^2}$

c. $(3e^{-4x})^2$

Natural Base Functions: exponential functions of the form $f(x) = ae^{rx}$.

If a > 0 and r > 0 then it represents exponential growth. If a > 0 and r < 0 it represents exponential decay.

Example 3: Tell whether each is example of exponential growth or decay.

a.
$$f(x) = \frac{1}{8}e^{5x}$$
 b. $f(x) = e^{-8x}$

Continuously Compounded Interest: If interest is compounded continuously we use the formula...

$A = \mathbf{P}e^{\mathbf{rt}}$		
P =	<i>r</i> =	t =

Example 4: You deposit \$1500 in an account that pays 7.5% annual interest confounded continuously. What is the balance after 1 year?