Lesson 8.4: Part 1

A logarithm is just a special way to ask a specific question.

The Question:

Logarithmic Form

Oh no! My logarithm has no base!

log10

 $log \frac{1}{100}$

log1000

The Logarithm Loop Trick

Always draw your loop counter-clockwise from the base!

$$log_b a = x$$
 $b^x = a$

Example 1:

Convert to exponential form.	Convert to logarithmic form.
$log_{4}16 = 2$	$3^2 = 9$
$log_{5}125 = x$	$2^{x} = 18$

Example 2: Evaluate

 $log_3 81$

Lesson 8.4: Part 2

Special Values: Log of 1 - $log_b 1 = 0$	$\rightarrow b^0 = 1$	
Log of base b – $log_b l$	$b=1 \rightarrow b^1=1$	
Common Logarithm: (base 10)	$log_{10}x = logx$	** log key on calculator
Natural Logarithm: (base e)	$log_e x = lnx$	** In key on calculator
Inverse Logs:	If $g(x) = log_b x$ what is the inver	se?

 $g\bigl(g^{-1}(x)\bigr) =$

 $g^{-1}\bigl(g(x)\bigr) =$

Example 3: Find the inverse of the function.

a.
$$y = log_8 x$$
 b. $y = ln(x - 3)$

$$b^{\log_b x} = x$$
 $\log_b b^x = x$

Example 4: Use inverse properties to simplify.

a. 10^{logx}

b. $log_5 125^x$

Lesson 8.5: Properties of Logarithms

Recall: Exponent rules

a. Multiplication Property $b^m \cdot b^n = b^{m+n}$

b. Division Exponents $\frac{b^{m}}{b^{n}} = b^{m-n}$

log _b u	log _b v	log _b uv
log10 =	<i>log</i> 100 =	<i>log</i> 1000 =
<i>log</i> .1 =	<i>log</i> .01 =	<i>log</i> .001 =
$log_24 =$	$log_2 8 =$	$log_{2}32 =$

Conjecture? $log_b uv =$

 Product Property:
 $log_b uv =$

 Quotient Property:
 $log_b \frac{u}{v} =$

 Power Property:
 $log_b u^n =$

Example 1: Evaluate

 $3^{x} = 12$

Example 2: Expand

a. $log_{10}100x^6$

b. $log_2 9x^2$

Example 3: Condense

a. $2log_37 - 5log_3x$

b. $log_4 5 + 2log_4 x$

Example 4: Given $log_b a = c$ and $log_b d = e$ Evaluate the following

a. $log_b \frac{a}{d}$ b. $log_b a^2$

c. $log_b a^2 d^3$

Change of Base Formula

Let x, y, and b be positive numbers with $b \neq 0$ and $c \neq 1$

$$log_x y = \frac{log_b y}{log_b x}$$
 OR $log_x y = \frac{lny}{lnx}$

*** Use *b* = 10 so we can use calculator!

Example 5: Use change of base formula to evaluate.

a. *log*₆9

b. *log*₄8

Lesson 8.6: Solving Exponential and Logarithmic Equations

Properties:

If two powers with the same base are equal, then their exponents must be equal. If $b^x = b^y$, then x = y for b > 0 & $b \neq 1$

 $log_b x = log_b y$ then x = y

Example 1: $2^{4x} = 32^{x-1}$

Example 4: $log_4(x+3) = log_4(8x+17)$

Example 2: $4^x = 15$

Example 5: $log_4(x+3) = 2$

Example 3: $5^{x+2} + 3 = 28$

Recall:

The domain of logarithmic functions does not typically include all real numbers. Be sure to check your solutions for extraneous solutions.

Example 6: $log_2 x + log_2 (x - 7) = 3$

Example 7: $log_2(2x + 2) = log_2(x - 7)$