Lesson 9.1: Inverse and Joint Variation

j Direct Variation: (recall from 2.5) as one variable increases so does the other and as one variable decreases so does the other

$$
y=k x
$$

Example 1: Do x and y show direct variation, inverse variation, or neither?
a. $x y=4.8$
b. $x=\frac{y}{1.5}$
c. $y=x-5$

Example 2: x and y vary inversely, $y=6$ when $x=1.5$
a. Write an equation that relates x and y
b. Find y when $x=\frac{4}{3}$

Example 3: The volume of gas in a container varies inversely with the amount of pressure. A gas has volume $75 \mathrm{in}^{3}$ at a pressure of $25 \mathrm{lb} / \mathrm{in}^{2}$. Write a model relating volume and pressure.

Example 4: Write an equation for each situation.
a. y varies directly with x and inversely with z^{2}
b. y varies inversely with x^{3}
c. z varies jointly with x^{2} and y
d. y varies inversely with x and z

Lesson 9.4 Multiplying and Dividing Rational Expressions

" A rational expression is in simplified form provided its numerator and denominator have no common factors (other than ± 1)

Part 1:

Recall: $\frac{a c}{b c}=\frac{a}{b}$ (divide out common factor of c)

Notice: $\frac{a+c}{b+c}$ is simplified (no common factors)

Example 1: Simplify the following rational expressions.
d. $\frac{x^{2}-5 x-6}{x^{2}-1}$
e. $\frac{6 x^{2} y^{3}}{2 x^{2} y^{2}} \cdot \frac{10 x^{3} y^{4}}{18 y^{2}}$

$$
\text { f. } \frac{3 x-27 x^{3}}{3 x^{2}-2 x-1} \cdot \frac{3 x^{2}-4 x+1}{3 x}
$$

g. $\frac{x+2}{27 x^{3}+8} \cdot 9 x^{2}-6 x+4$

Part 2:
Recall: $\frac{a}{b} \div \frac{c}{d}$

Dividing a fraction is the same as \qquad by the \qquad

Example 2: Simplify the following rational expressions.
a. $\frac{5 x}{3 x-12} \div \frac{x^{2}-2 x}{x^{2}-6 x+8}$
b. $\frac{3}{4 x-8} \div \frac{x^{2}+3 x}{x^{2}+x-6}$
c. $\frac{8 x^{2}+10 x-3}{4 x^{2}} \div 4 x^{2}-x$
d. $\frac{x}{x-2} \cdot 2 x+3 \div \frac{4 x^{2}-9}{x-2}$

