Lesson 9.1: Inverse and Joint Variation

Direct Variation: (recall from 2.5) as one variable increases so does the other and as one variable decreases so does the other

y = kx

Inverse Variation: as one variable increases the other variable decreases and vice versa. $y = \frac{k}{x}$ * where $x \neq 0$ and k is the constant of variation

Example 1: Do x and y show direct variation, inverse variation, or neither?

a. xy = 4.8 b. $x = \frac{y}{1.5}$ c. y = x - 5

Example 2: x and y vary inversely, y = 6 when x = 1.5

a. Write an equation that relates x and y

b. Find y when
$$x = \frac{4}{3}$$

Example 3: The volume of gas in a container varies inversely with the amount of pressure. A gas has volume 75 in^3 at a pressure of $25lb/in^2$. Write a model relating volume and pressure.

Joint Variation: when a quantity varies directly as the product of two or more other quantities z = kab* z varies jointly with a and b

Combined Variation: when a quantity contains both direct and inverse variations

Example 4: Write an equation for each situation.

- a. y varies directly with x and inversely with z^2
- b. y varies inversely with x^3
- c. z varies jointly with x^2 and y

d. y varies inversely with x and z

Lesson 9.4 Multiplying and Dividing Rational Expressions

- . ___ . .

A rational expression is in **simplified form** provided its numerator and denominator have no common factors (other than ± 1) _ . __ . __ . __ . __ . __ . __ . __ .

. _ . _ . _ . _ . _ .

Part 1:

Recall: $\frac{ac}{bc} = \frac{a}{b}$ (divide out common factor of c)

. _ . _ . _ . _ . _ . _ . _ . _ . _ .

Notice: $\frac{a+c}{b+c}$ is simplified (no common factors)

Example 1: Simplify the following rational expressions.

d.	$x^2 - 5x - 6$	$\frac{x^2-5x-6}{x^2-1}$ e	$6x^2y^3$	$10x^3y^4$
	$x^2 - 1$		$2x^2y^2$	$18y^{2}$

f.
$$\frac{3x-27x^3}{3x^2-2x-1} \cdot \frac{3x^2-4x+1}{3x}$$
 g. $\frac{x+2}{27x^3+8} \cdot 9x^2 - 6x + 4$

Part 2:

Recall:
$$\frac{a}{b} \div \frac{c}{d}$$

Dividing a fraction is the same as ______ by the ______.

Example 2: Simplify the following rational expressions.

a.
$$\frac{5x}{3x-12} \div \frac{x^2-2x}{x^2-6x+8}$$
 b. $\frac{3}{4x-8} \div \frac{x^2+3x}{x^2+x-6}$

c.
$$\frac{8x^2 + 10x - 3}{4x^2} \div 4x^2 - x$$

d.
$$\frac{x}{x-2} \cdot 2x + 3 \div \frac{4x^2-9}{x-2}$$