Name
Hour \qquad

Lesson 5.2: Solving Quadratic Equations by Factoring

Quadratic Function: has the form $y=a x^{2}+b x+c$ where $a \neq 0$
I. Factoring $-x^{2}+b x+c$
** To make x^{2} term positive, factor out a \qquad .
a. $-x^{2}+10 x-9$
b. $7 x-x^{2}-12$
II. Difference of Two Squares - Higher Powers
**
powers are perfect squares
a. $x^{4}-16$
b. $3 x^{4}-243$
III. Mixed Factoring
** Steps for Factoring:

1. Factor out \qquad
2. Binomial (2 terms): \qquad
3. Trinomial (3 terms): \qquad
a. $4 x(x-2)-3(x-2)$

Algebra Two Honors

Solving Quadratics Notes

IV. Solving Equations by Factoring

** Equation must first be set equal to \qquad .
a. $x^{2}=25$
b. $x^{4}-81=0$

V. Find the Zeros of a Function

** , \qquad and \qquad all refer to the solutions to a quadratic equation!
a. $y=x^{2}-9 x+18$
b. $y=x^{2}-4$

Lesson 5.3: Solving Quadratic Equations by Finding Square Roots

Parts of a Radical

* If the \qquad is not written, it is automatically a \qquad .

Properties of Square roots:

** When simplifying radicals, find the \qquad .

Example 1: Simplify
a. $\frac{\sqrt{8}}{\sqrt{2}}$
c. $\sqrt{24}$
b. $\sqrt{8}$
d. $\sqrt{6} \cdot \sqrt{15}$

Rationalizing the Denominator:

To be completely simplified, there \qquad be a radical in the \qquad .

1. Multiplying a fraction by \qquad does not change the value.
2. Any expression divided by itself is equal to \qquad .
3. To get rid of a \qquad in the \qquad , multiply the numerator and denominator by the
\qquad in the denominator.
4. Simplify

Example 2: Simplify.
a. $\sqrt{\frac{2}{3}}$
b. $\frac{\sqrt{2}}{\sqrt{11}}$

Methods of Solving Quadratics:

1. Factoring: Must be in the form \qquad ; will \qquad work for all polynomials
2. Square Roots: Must be in the form \qquad ; will \qquad work if \qquad is not 0

Example 3: Solve

a. $2 x^{2}+3=27$
b. $\frac{1}{4}(x-8)^{2}=7$

Lesson 5.4: Complex/Imaginary Numbers

Complex (Imaginary) Numbers: " i " represents the imaginary number $\sqrt{-1}$, so that negative radicals may be used.

$$
\begin{aligned}
& i=\sqrt{-1} \\
& i^{2}=(\sqrt{-1})^{2}=-1 \\
& i^{3}=(\sqrt{-1})^{2}(\sqrt{-1})=-i \\
& i^{4}=(\sqrt{-1})^{2}(\sqrt{-1})^{2}=(-1)(-1)=1
\end{aligned}
$$

Example 1: Simplify
a. $\sqrt{-4}$
b. $\sqrt{-9}$
c. $\sqrt{-28}$

Complex Numbers

Example 2: Categorize the numbers below.
a. $-4 i$
b. $\frac{3}{5}$
C. $2+4 i$
d. 45
e. i

Complex Numbers
$a+b i$

Real Numbers	Imaginary Numbers
	Pure Imaginary Numbers

Properties of Complex Numbers:

Example 3: Write the expression as a complex number in standard form.
a. $(2+3 i)+(4-5 i)=$
b. $(2+3 i)-(4-5 i)=$
c. $(2+3 i)(4-5 i)=$
d. $(3+2 i)^{2}=$

Solving Equations with Imaginary Numbers

Example 4: Solve each equation. Give all real and imaginary solutions.
a. $x^{2}=-1$
b. $x^{2}=-16$
c. $3 x^{2}-10=-34$
d. $-6(x+5)^{2}=120$

Lesson 5.4: Complex/Imaginary Numbers - Part 2

Conjugates:

To find the conjugate of a binomial, \qquad the sign between the 2 terms.

Example 1: Give the conjugate of each.
a. $a+b$
b. $2+3 i$
c. $5-\sqrt{2}$
d. $5-6 x$

Why are conjugates useful?

Conjugates allow us to:

- Get rid of \qquad in the \qquad
- Get rid of \qquad in the \qquad

Example 2: Write each expression as a complex number in standard form.
** Always be sure to multiply the \qquad and \qquad by the conjugate!
a. $\frac{2+3 i}{4-5 i}$
b. $\frac{1}{3+2 i}$

Using Complex Numbers in Fractal Geometry:

Graphing in the Complex Plane:

Example 1: Plot the following points
a. $1-2 i$
b. $-2+3 i$
C. $4 i$
d. 4

Absolute Value of Complex Numbers:

** The absolute value of a complex number is the number's \qquad in the complex plane.

Example 2: Find the absolute value of each complex number.
a. $3+4 i$

b. $-3 i$

c. $-1+5 i$

Lesson 5.5: Completing the Square

Factor: $x^{2}+6 x+9$ $x^{2}-8 x+16$

What would cause $x^{2}+6 x+$ \qquad to be a perfect square?

This method allows us to use the square root method to solve quadratics that cannot be rewritten as \qquad .

$\mathrm{HON}^{\mathrm{W}}$?

1. Rearrange the equation so it looks like:
2. If $x \neq 1$, divide every term by a
3. In the squares, write \qquad .
4. Now, you can rewrite the left side as \qquad .
5. Take the square root of both sides. Don't forget the \qquad .

Example \#3: Solve by completing the square.
a. $x^{2}+10 x-3=0$
b. $x^{2}-12 x+5=0$
c. $2 x^{2}+12 x+9=0$

Methods for Solving Quadratic Functions:

1.
2.
3.

Lesson 5.6: The Quadratic Formula/Discriminant

In English:
x equals the opposite of b plus or minus the square root of b squared minus $4 a c a l l o v e r ~ 2 a$

| Quadratic | | Example: | $x^{2}+10 x+25=0$
 Solution(s): |
| :---: | :--- | :--- | :--- | :--- |
| Formula | | | |

Methods for Solving Quadratic Equations:

1.
2.
3.
4.

Example 4: Solve using any method.
a. $4 x^{2}+28 x=-49$
b. $3(x+4)^{2}=-27$

