Name ______ Hour _____

Lesson 5.2: Solving Quadratic Equations by Factoring

Quadratic Function: has the form $y = ax^2 + bx + c$ where $a \neq 0$

Factoring $-x^2 + bx + c$ I.

** To make x^2 term positive, factor out a _____.

a. $-x^2 + 10x - 9$ b. $7x - x^2 - 12$

II. **Difference of Two Squares – Higher Powers**

** _____ powers are perfect squares a. $x^4 - 16$ b. $3x^4 - 243$

III. **Mixed Factoring**

- ** Steps for Factoring:
 - 1. Factor out _____
 - 2. Binomial (2 terms):
 - 3. Trinomial (3 terms):
- a. 4x(x-2) 3(x-2)

IV. Solving Equations by Factoring

** Equation must first be set equal to _____. a. $x^2 = 25$ b. $x^4 - 81 = 0$

V. Find the Zeros of a Function

**;;	, and	all refer to the
solutions to a quadratic equation!		
a. $y = x^2 - 9x + 18$	b. $y = x^2 - 4$	

Lesson 5.3: Solving Quadratic Equations by Finding Square Roots

Parts of a Radical

b. $\sqrt{8}$

d. $\sqrt{6} \cdot \sqrt{15}$

Rationalizing the Denominator:

To be completely simplified, there ______ be a radical in the ______.

1.	Multiplying a fraction by does not change the value.
2.	Any expression divided by itself is equal to
3.	To get rid of a,
	multiply the numerator and denominator by the
	in the denominator.
4.	Simplify

Example 2: Simplify.

a.
$$\sqrt{\frac{2}{3}}$$
 b. $\frac{\sqrt{2}}{\sqrt{11}}$

Methods of Solving Quadratics:

1. Factoring: Must be in the form	; will	work for all polynomials
-----------------------------------	--------	--------------------------

2. Square Roots: Must be in the form _____; will _____ work if _____ is not 0

Example 3: Solve

a.
$$2x^2 + 3 = 27$$

b. $\frac{1}{4}(x-8)^2 = 7$

Lesson 5.4: Complex/Imaginary Numbers

<u>Complex (Imaginary) Numbers</u>: "*i*" represents the imaginary number $\sqrt{-1}$, so that negative radicals may be used.

$$i = \sqrt{-1}$$

$$i^{2} = (\sqrt{-1})^{2} = -1$$

$$i^{3} = (\sqrt{-1})^{2} (\sqrt{-1}) = -i$$

$$i^{4} = (\sqrt{-1})^{2} (\sqrt{-1})^{2} = (-1)(-1) = 1$$

Example 1: Simplify

a. $\sqrt{-4}$

b.
$$\sqrt{-9}$$
 c. $\sqrt{-28}$

Complex Numbers

a + bi

Example 2: Categorize the numbers below.

a. -4ib. $\frac{3}{5}$ c. 2 + 4id. 45

Properties of Complex Numbers:

Example 3: Write the expression as a complex number in standard form.

a.
$$(2 + 3i) + (4 - 5i) =$$

b. $(2 + 3i) - (4 - 5i) =$

c.
$$(2 + 3i) (4 - 5i) =$$
 d. $(3 + 2i)^2 =$

Solving Equations with Imaginary Numbers

Example 4: Solve each equation. Give all real and imaginary solutions.

a.
$$x^2 = -1$$
 b. $x^2 = -16$

c. $3x^2 - 10 = -34$

d.
$$-6(x+5)^2 = 120$$

Lesson 5.4: Complex/Imaginary Numbers – Part 2

Conjugates:

To find the conjugate of a binomial, ______ the sign between the 2 terms.

Example 1: Give the conjugate of each.

- a. *a* + *b*
- b. 2 + 3*i*
- c. $5 \sqrt{2}$
- d. 5 − 6*x*

Example 2: Write each expression as a complex number in standard form.

** Always be sure to multiply the	and	by the conjugate!
a. $\frac{2+3i}{4-5i}$	b. $\frac{1}{3+2i}$	

Using Complex Numbers in Fractal Geometry:

5

Example 1: Plot the following points

- a. 1 − 2*i*
- b. -2 + 3i
- c. 4*i*
- **d**. 4

Absolute Value of Complex Numbers:

** The absolute value of a complex number is the number's _______in the complex plane.

Re[e]

 $\operatorname{Im}[c]$

Example 2: Find the absolute value of each complex number.

Solving Quadratics Notes

Lesson 5.5: Completing the Square

Factor: $x^2 + 6x + 9$ $x^2 - 8x + 16$

What would cause $x^2 + 6x +$ ______ to be a perfect square?

		$x^2 \pm bx + \left(\frac{b}{2}\right)^2 = \left(x \pm \frac{b}{2}\right)^2$
Complete the	<u> </u>	

This method allows us to use the square root method to solve quadratics that cannot be rewritten as ______.

HONS MHNS

- 1. Rearrange the equation so it looks like:
- 2. If $x \neq 1$, divide every term by a

3. In the squares, write _____.

4. Now, you can rewrite the left side as ______.

5. Take the square root of both sides. Don't forget the _____.

Example #3: Solve by completing the square.

a.
$$x^2 + 10x - 3 = 0$$

b. $x^2 - 12x + 5 = 0$

c. $2x^2 + 12x + 9 = 0$

Methods for Solving Quadratic Functions:

1.

2.

3.

Lesson 5.6: The Quadratic Formula/Discriminant

In English:

x equals the opposite of b plus or minus the square root of b squared minus 4ac all over 2a

Quadratic		Example:	x ² + 10x + 25 = 0
Formula		Discriminant:	Solution(s):
How and why does the discriminant work?		Means:	Graph:
Example:	6x ² + x - 15 = 0	Example:	x ² + 2x + 5 = 0
Discriminant:	Solution(s):	Discriminant:	Solution(s):
Means:	Graph:	Means:	Graph:

Methods for Solving Quadratic Equations:

- 1. 2. 3.
- 4.

Example 4: Solve using any method.

a.
$$4x^2 + 28x = -49$$

b. $3(x+4)^2 = -27$