Lesson 7.1: $\mathbf{N}^{\text {th }}$ Roots and Rational Exponents

Recall:

$$
\sqrt{4}=2 \quad \text { since }
$$

Converting between Radical Form and Rational Exponent Form

What is $\sqrt[3]{8} ?$

Example 1: Rewrite the expression using rational exponent notation or radical notation. Evaluate
a. $\sqrt{n}=$
b. $\sqrt[3]{n}=$
c. $\sqrt[4]{81}=$
d. $\sqrt[n]{x}=$
e. $4^{1 / 2}=$
f. $8^{1 / 3}=$

Example 2: Evaluate without using a calculator. Show all work!
a. $\sqrt[3]{8}=$
f. $\left(4^{1 / 2}\right)^{3}=$
b. $\sqrt[3]{-8}=$
g. $\sqrt[n]{x^{m}}=$
c. $\sqrt[4]{16}=$
h. $8^{-2 / 3}=$
d. $\sqrt[4]{-16}=$
i. $16^{5 / 2}=$
e. $4^{3 / 2}=$
j. $64^{-2 / 3}=$

Example 3: Solve each equation.
a. $5 y^{4}=80$
c. $\sqrt[5]{x+1}=2$
b. $(x+1)^{3}=2$
d. $4(2 x+4)^{2}-7=9$

7.2 Properties of Rational Exponents

Multiplication Property: keep the base and add the exponents.
Division Property: keep the base and subtract the exponents.
Power to a Power Property: keep the base and multiply the exponents.

Example 1: Simplify the expression.
a. $6^{\frac{1}{2}} \cdot 6^{\frac{1}{3}}$
c. $\left(4^{3} \cdot 2^{3}\right)^{-1 / 3}$
d. $\frac{6}{6^{3 / 4}}$
b. $\left(27^{\frac{1}{3}} \cdot 6^{\frac{1}{4}}\right)^{2}$
e. $\left(\frac{18^{1 / 4}}{91 / 4}\right)^{3}$

Example 2: Write the expression in simplest form.
a. $\sqrt[4]{64}$
c. $\frac{\sqrt[3]{32}}{\sqrt[3]{4}}$
b. $\sqrt[3]{25} \cdot \sqrt[3]{5}$
d. $\sqrt[4]{\frac{7}{8}}$

Adding and Subtracting Roots and Radicals

Example 3: Perform the indicated operation.
a. $5\left(4^{3 / 4}\right)+3\left(4^{3 / 4}\right)$
b. $\sqrt[3]{81}-\sqrt[3]{3}$

7.2 (Day 2 Notes)

The properties of rational exponents and radicals can also be applied to expressions involving variables. Because a variable can be either positive or negative, sometimes an absolute value is needed when simplifying a variable expression.

$$
\sqrt[n]{x^{n}}=x \text { when } \mathrm{n} \text { is an odd integer }
$$

$$
\sqrt[n]{x^{n}}=|x| \text { when } \mathbf{n} \text { is an even integer }
$$

NOTE: Absolute value is not needed when all the variables are assumed to be positive.
Example 1: Simplify the expression. Assume all variables are positive.
a. $\sqrt[3]{27 a^{9}}$
b. $\sqrt[5]{\frac{x^{5}}{y^{10}}}$
d. $\left(16 g^{4} h^{2}\right)^{1 / 2}$
e. $\frac{18 r s^{2 / 3} t^{4}}{6 r^{1 / 4} t^{-3}}$
C. $\sqrt[4]{32 d^{4} e^{9} f^{14}}$
f. $\sqrt[5]{\frac{g^{2}}{h^{7}}}$

Example 2: Perform the indicated operation. Assume all variables are positive.
a. $8 \sqrt{x}-3 \sqrt{x}$
b. $3 g h^{1 / 4}-6 g h^{1 / 4}$
c. $2 \sqrt[4]{6 x^{5}}+x \sqrt[4]{6 x}$

