Recall:

 $\sqrt{4} = 2$ since

Converting between Radical Form and Rational Exponent Form

What is $\sqrt[3]{8}$?

 $\sqrt[n]{x} = x^{\frac{||}{|}}$

Example 1: Rewrite the expression using rational exponent notation or radical notation. Evaluate

- a. $\sqrt{n} =$ d. $\sqrt[n]{x} =$
- b. $\sqrt[3]{n} =$ e. $4^{1/2} =$
- c. $\sqrt[4]{81} =$ f. $8^{1/3} =$

Example 2: Evaluate without using a calculator. Show all work!

- a. $\sqrt[3]{8} =$ f. $(4^{1/2})^3 =$
- b. $\sqrt[3]{-8} =$ g. $\sqrt[n]{x^m} =$
- c. $\sqrt[4]{16} =$ h. $8^{-2/3} =$
- d. $\sqrt[4]{-16} =$ i. $16^{5/2} =$
- e. $4^{3/2} =$ j. $64^{-2/3} =$

Example 3: Solve each equation.

a.
$$5y^4 = 80$$
 c. $\sqrt[5]{x+1} = 2$

b. $(x+1)^3 = 2$

d. $4(2x+4)^2 - 7 = 9$

7.2 Properties of Rational Exponents

Multiplication Property: keep the base and add the exponents.

Division Property: keep the base and subtract the exponents.

Power to a Power Property: keep the base and multiply the exponents.

Example 1: Simplify the expression.

a. $6^{\frac{1}{2}} \bullet 6^{\frac{1}{3}}$ **c.** $(4^3 \bullet 2^3)^{-\frac{1}{3}}$

d.
$$\frac{6}{6^{3/4}}$$

Example 2: Write the expression in simplest form.

a. $\sqrt[4]{64}$ c. $\frac{\sqrt[3]{32}}{\sqrt[3]{4}}$

b.
$$\sqrt[3]{25} \cdot \sqrt[3]{5}$$
 d.

 $\sqrt[4]{\frac{7}{8}}$

Adding and Subtracting Roots and Radicals

Example 3: Perform the indicated operation.

a.
$$5\left(4^{\frac{3}{4}}\right) + 3\left(4^{\frac{3}{4}}\right)$$
 b. $\sqrt[3]{81} - \sqrt[3]{3}$

7.2 (Day 2 Notes)

The properties of rational exponents and radicals can also be applied to expressions involving variables. Because a variable can be either positive or negative, sometimes an absolute value is needed when simplifying a variable expression.

$$\sqrt[n]{x^n} = x$$
 when n is an odd integer

 $\sqrt[n]{x^n} = |x|$ when n is an even integer

NOTE: Absolute value is not needed when all the variables are assumed to be positive.

Example 1: Simplify the expression. Assume all variables are positive.

a.
$$\sqrt[3]{27a^9}$$
 d. $(16g^4h^2)^{\frac{1}{2}}$

b.
$$\sqrt[5]{\frac{x^5}{y^{10}}}$$
 e. $\frac{18rs^{2/3}t^4}{6r^{1/4}t^{-3}}$

C.
$$\sqrt[4]{32d^4e^9f^{14}}$$

f.
$$\sqrt[5]{\frac{g^2}{h^7}}$$

Example 2: Perform the indicated operation. Assume all variables are positive.

a. $8\sqrt{x} - 3\sqrt{x}$

b. $3gh^{\frac{1}{4}} - 6gh^{\frac{1}{4}}$

c. $2\sqrt[4]{6x^5} + x\sqrt[4]{6x}$