5.1: Graphing Quadratic Functions – Standard Form

Quadratic Function: a function in the standard form of $f(x) = ax^2 + bx + c$ where $a \neq 0$.

A quadratic function will graph as a _____.

Example 1: Change to standard form

a. -(x+3)(x-2)

b. $y-3 = \frac{1}{4}(x+2)^2$

Vertex: The lowest or highest point of the parabola.

Also called .

The coordinates of the vertex are $\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right)$

Axis Of Symmetry: the vertical line passing through the vertex of the parabola producing mirror images of each half of the parabola.

The axis of symmetry is $x = \frac{-b}{2a}$

Parabola opens up if _____

opens down if _____

Example 2: Find the vertex of the equation from example 1 Part b.

Graph the Quadratic Function:

• From Standard Form $y = -x^2 + 4x$	z – 2
1. Find the of	_
2. Use to find	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
** Vertex: 3. Find the	
** y-intercept:4. Find	
** Axis of symmetry: Example 3: Graph the following equation: $y = x^2 - 6x + 11$	
Vertex:	· ·
y-intercept:	
Axis of symmetry:	

5.1 – Part 2: Graphing Quadratic Functions – Vertex & Intercept Form

Vertex Form: y = a(x - h)2 + k, where the vertex is (h, k), the axis of symmetry is x = h and "a" represents the vertical stretch of the graph.

From standard form ______ to get to vertex form.

Graph From Vertex Form $y = (x - 1)^2 + 2$

- 1. Determine the _____
- 2. Choose _____ coordinate.

3. Axis of symmetry: _____

									х
									-

Τ

Example 1: Graph from vertex form	y = -(x - 2)	² – 2	2								
						'	ţ y				
Vertex:											
											_
2 nd Point				 			\vdash				
2 1 0int											
				 			╞		_		х —
										1	_
										_	
Axis of symmetry:											_
											_

Intercept/Root Form: y = a (x - p) (x - q), where the x- intercepts are p and q and the axis of symmetry is half way between (p, 0) and (q, 0)From standard form ________ to get to intercept form. Graph From Intercept Form y = 2(x - 1)(x - 6)1. Identify the ______ 2. Axis of symmetry: ______ 3. Use axis of symmetry to find the ______

Example 2: Graph from intercept form y = 4(x - 1)(x + 1)

Intercepts/Roots:					↑ y				
Axis of symmetry:									
•									×

Lesson 5.5 – Part 2: Completing the Square/Vertex Form & Intercept/Root Form

Vertex Form: y = a(x - h)2 + k, where the vertex is (h, k), the axis of symmetry is x = h and "a" represents the vertical stretch of the graph.

From standard form ______ to get to vertex form.

Completing the Square:

$$x^2 \pm bx + \left(\frac{b}{2}\right)^2 = \left(x \pm \frac{b}{2}\right)^2$$

Example #1 Write the quadratic function in vertex form. Give the coordinates of the vertex and the equation of the axis of symmetry. $y = x^2 + 10x - 3$

Vertex Form:	
--------------	--

Vertex:

Axis of Symmetry: _____

Example #2 Write the quadratic function in vertex form. Give the coordinates of the vertex and the equation of the axis of symmetry. $y = -x^2 + 14x - 45$

Vertex Form:		
--------------	--	--

Vertex: _____

Axis of Symmetry: _____

Intercept Form: y = a(x - p)(x - q), where the x- intercepts (roots) are p and q and the axis of symmetry is half way between (p, 0) and (q, 0)

From standard form ______ to get to intercept form.

Example #3 Write the quadratic function in intercept/root form and identify the roots of the function. $y = -2x^2 + 3x + 20$

Intercept Form: _____

Roots: _____

Given the following equations, identify which form the equation is in.

- a. $y 2 = -(x 3)^2$ d. $y = -\frac{7}{3}(x+6)(x+3)$
- b. y = (x + 2)(x 3)e. $y = -3x^2 + 5$
- c. $y = x^2 6x + 11$ f. $y = \frac{5}{4}(x-3)^2$

5.8: Modeling with Quadratic Functions

Vertex: _____ Intercept/Root: _____ Standard: _____

Write a quadratic function for each graph shown in vertex, intercept/root, and standard form.

Example 1:

b. Intercept/Root Form: _____

c. Standard Form: _____

Example 2:

a. Intercept/Root Form: _____

b. Standard Form: _____