\qquad

5.1: Graphing Quadratic Functions - Standard Form

Quadratic Function: a function in the standard form of $f(x)=a x^{2}+b x+c$ where $a \neq 0$. A quadratic function will graph as a \qquad .

Example 1: Change to standard form
a. $-(x+3)(x-2)$
b. $y-3=\frac{1}{4}(x+2)^{2}$

Vertex: The lowest or highest point of the parabola.
Also called \qquad .

The coordinates of the vertex are $\left(\frac{-b}{2 a}, f\left(\frac{-b}{2 a}\right)\right)$

Axis Of Symmetry: the vertical line passing through the vertex of the parabola producing mirror images of each half of the parabola.
The axis of symmetry is $x=\frac{-b}{2 a}$

Parabola opens up if \qquad opens down if \qquad

Example 2: Find the vertex of the equation from example 1 Part b.

Graph the Quadratic Function:

- From Standard Form $y=-x^{2}+4 x-2$

1. Find the \qquad of \qquad
2. Use \qquad to find \qquad
** Vertex: \qquad
3. Find the \qquad .
** y-intercept: \qquad
4. Find \qquad .

** Axis of symmetry: \qquad

Example 3:

Graph the following equation: $y=x^{2}-6 x+11$

Vertex:

\qquad
y-intercept: \qquad

Axis of symmetry: \qquad

5.1 - Part 2: Graphing Quadratic Functions - Vertex \& Intercept Form

Vertex Form: $y=a(x-h) 2+k$, where the vertex is (h, k), the axis of symmetry is $x=h$ and "a" represents the vertical stretch of the graph.

From standard form \qquad to get to vertex form.

Graph From Vertex Form $y=(x-1)^{2}+2$

1. Determine the \qquad
2. Choose \qquad coordinate.
3. Axis of symmetry: \qquad

Example 1: Graph from vertex form

Vertex: \qquad
$2^{\text {nd }}$ Point: \qquad

Axis of symmetry: \qquad

$$
y=-(x-2)^{2}-2
$$

Intercept/Root Form: $y=a(x-p)(x-q)$, where the x - intercepts are p and q and the axis of symmetry is half way between $(p, 0)$ and $(q, 0)$

From standard form \qquad to get to intercept form.

Graph From Intercept Form $\quad y=2(x-1)(x-6)$

1. Identify the \qquad
2. Axis of symmetry: \qquad
3. Use axis of symmetry to find the \qquad

Example 2: Graph from intercept form $\quad y=4(x-1)(x+1)$

Intercepts/Roots: \qquad

Axis of symmetry: \qquad

Vertex:

Lesson 5.5 - Part 2: Completing the Square/Vertex Form \& Intercept/Root Form

Vertex Form: $y=a(x-h) 2+k$, where the vertex is (h, k), the axis of symmetry is $x=h$ and "a" represents the vertical stretch of the graph.

From standard form \qquad to get to vertex form.

Completing the Square:

$$
x^{2} \pm b x+\left(\frac{b}{2}\right)^{2}=\left(x \pm \frac{b}{2}\right)^{2}
$$

Example \#1 Write the quadratic function in vertex form. Give the coordinates of the vertex and the equation of the axis of symmetry.
$y=x^{2}+10 x-3$

Vertex Form: \qquad
Vertex: \qquad
Axis of Symmetry: \qquad
Example \#2 Write the quadratic function in vertex form. Give the coordinates of the vertex and the equation of the axis of symmetry.
$y=-x^{2}+14 x-45$

Vertex Form: \qquad
Vertex: \qquad
Axis of Symmetry: \qquad

Intercept Form: $y=a(x-p)(x-q)$, where the x-intercepts (roots) are p and q and the axis of symmetry is half way between $(p, 0)$ and $(q, 0)$

From standard form \qquad to get to intercept form.

Example \#3 Write the quadratic function in intercept/root form and identify the roots of the function. $y=-2 x^{2}+3 x+20$

Intercept Form:
Roots: \qquad

Given the following equations, identify which form the equation is in.
a. $y-2=-(x-3)^{2}$
b. $y=(x+2)(x-3)$
c. $y=x^{2}-6 x+11$
d. $y=-\frac{7}{3}(x+6)(x+3)$
e. $y=-3 x^{2}+5$
f. $y=\frac{5}{4}(x-3)^{2}$

5.8: Modeling with Quadratic Functions

Vertex: \qquad Intercept/Root: \qquad Standard:

Write a quadratic function for each graph shown in vertex, intercept/root, and standard form.

Example 1:

a. Vertex Form: \qquad
b. Intercept/Root Form: \qquad
c. Standard Form: \qquad

Example 2:

a. Vertex Form: \qquad
a. Intercept/Root Form: \qquad
b. Standard Form: \qquad

